

AgriGrid

A business model concept for next-generation mini-grids in Africa

<u>1</u> сонтехт

- 2 introducing agrigrid
- 3 WHY AGRIGRID?

4 CASE STUDY

CONTEXT

Poverty, energy, and agriculture dynamics in Sub-Saharan Africa

The majority of the world's poor lives in rural sub-Saharan Africa

People in extreme poverty (millions)

East Asia and Pacific E Europe and Central Asia E Latin America and the Caribbean Middle East and North Africa Rest of the world South Asia Sub-Saharan Africa

Source: World Bank PovcalNet and Poverty & Equity Data Portal

Sources: www.un.org/sustainabledevelopment ; http://blogs.worldbank.org/

56% of

of the people currently living in extreme poverty are in Sub-Saharan Africa

70% of the world's poor population live in rural Africa

~90% extremely poor people will live in Sub-Saharan Africa, by 2030

55% of households in sub-Saharan Africa lack electricity access

Number of people without access to electricity, 2016

or Work

No data 0 500,000 1 million 5 million 10 million 25 million 50 million >100 million

Source: OWID based on World Bank, Sustainable Energy for All DEAALU and UNWPP DorWorldinData org/energy-production and changing-energy-sources + CC BY

In 2019

An estimated **573 million people in Sub-Saharan Africa** lack access to electricity

In 2030

Without dramatic changes in energy access, **600 million people in Africa** will lack access to electricity

Sources: www.un.org/sustainabledevelopment / http://blogs.worldbank.org/

Africa imports USD 50 billion of food each year

The food import bill for sub-Saharan Africa is expected to be **USD 48.7 billion in 2019**, up 3.8% from USD 46.9 billion in 2018⁵

Food imports in Africa are expected to grow to over **USD 110 billion by 2025**⁶

Consumer demand for food products in Africa will exceed USD 700 billion by 2030

Sources:

¹ FAO STAT

- ² http://algeriebusiness.com/agroalimentaire/sub-saharan-africa-food-imports-will-rise-to-48-7-billion-in-2019-fao/
- ³ https://www.downtoearth.org.in/news/a-grain-revolution-for-africa-58672
- ⁵ http://algeriebusiness.com/agroalimentaire/sub-saharan-africa-food-imports-will-rise-to-48-7-billion-in-2019-fao/
- ⁶ https://www.afdb.org/en/news-and-events/afdb-discusses-its-strategy-for-africas-agricultural-transformation-16155

Crop yields in Africa are a fraction of global averages

Cereal* yield (kg per hectare) in 20171

Africa has more than 50% of the world's fertile and unused arable land

Average fertilizer use in Africa is 17kg per hectare of arable land, compared with a global average of 135 kg

Agricultural yields are 56% of the international average

Cereal^{*} production (metric tons) - Sub-Saharan Africa, OECD members, World¹

Note:

*Cereal includes wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains

Sources:

¹ Word Bank, https://data.worldbank.org/ ² MDPI, Raising Crop Productivity in Africa through Intensification, 2017, p1

³ Abebe Shimeles, Audrey Verdier-Chouchane, Amadou Boly, Introduction: Understanding the Challenges of the Agricultural Sector in Sub-Saharan Africa, 2018, p1

These challenges are seen throughout sub-Saharan Africa

INTRODUCING AGRIGRID

A business model concept integrating agribusiness with mini-grid electrification AgriGrid businesses export* value-added products to external markets while also selling modern energy services

* "Export" refers to the sale of commodities produced in rural communities to any external market, including domestic urban markets.

Several levers are used to create economic value and increase export revenue in electrified villages

- Increased crop yield, diversity, intensity
- Extra harvest season for income smoothing
- 3 Production of modern, commercial grade food and agricultural products
 - Reduction in losses, pricing power, access to new markets
- 5 Reduction in losses, entrance to formal sector, access to new markets
- 6 Reduction in losses, entrance to formal sector, access to new markets
- Institutional infrastructure for convening, training, revenue sharing
- 8 Business analytics for decisions, optimization, reporting
- 9 Agricultural sales, technical partners, marketing, capital, legitimacy

A set of food and agricultural operations are added to the mini-grid development lifecycle

WHY AGRIGRID?

Targeting rural prosperity and strengthening mini-grid business models

Food and agriculture is a major potential source of wealth creation for rural areas

60% of arable land is in Africa¹

Only 4% of a rable land in Sub-Saharan Africa is $\ensuremath{\mathsf{irrigated}}^2$

Average fertilizer use in Africa is 17kg per hectare of arable land, compared with a global average of 135kg³

Agribusiness in Africa is a \$1 trillion opportunity⁴

Sources:

 https://www.growafrica.com/news/60-arable-land-africaand-it-has-billions-investment-potential
 https://www.ifpri.org/blog/irrigating-africa
 https://gro-intelligence.com/insights/articles/fertilizers-insub-saharan-africa
 https://www.afdb.org/en/news-and-events/africaagribusiness-a-us-1-trillion-business-by-2030-18678

Rural communities in Africa are often marginalized and excluded from agricultural wealth

	Rural Areas	Domestic Food and Agriculture Networks	Urban Areas
Characteristics	 Low income, agrarian communities Limited access to information and knowledge of best practices Limited access to inputs Limited access to finance Limited access to markets Off-grid with limited infrastructure 	 Strong presence of informal, opportunistic and exploitative operators Inefficient operations with limited incentive to modernize or optimize Often simple and low CAPEX trading businesses 	 Expanding populations Emerging, aspirational middle class Increasing purchasing power Increasing demand for quality food and beverages
Status quo	At the mercy of informal traders and middlemen	Inefficient systems with unrealized technical potential and large losses	Growing demand met by cost competitive food imports
Long-term outlook	Likely to remain economically disenfranchised and fragile without enhanced farmer protection	Likely to remain fragmented without major investments by formal actors	Likely to continue to favor imports over costly or low quality domestic products

Mini-grids are an important electrification solution for rural Africa but can be challenging investments

Source: CrossBoundary Energy Access

Modern Mini-Grid Investments in Africa

- · High Average Investment Per User
- Low Average Revenue Per User
- · Uncertainty in load and revenue forecasting
- · Limited economic activity precludes demand growth
- · OPEX floor reduces site profitability
- · Uncertain interactions with utilities and national planning
- · Uncertain and dynamic regulatory environments
- · Dynamic subsidy and capital environments
- High WACC reflecting several sources of investment risk

Site-level difficulties have limited* the scaling and impact of mini-grids in Africa to date

- Mini-grids are deployed in low-income communities with irregular cashflows
- The sizing of generation and storage is challenging due to seasonality and uncertainty in load forecasting
- Tariff designs require experimentation to test acceptance with pricesensitive communities
- Long-term growth in energy demand is difficult to forecast and rarely matches estimates
- Site-level investment performance remains poor, making it difficult for developers to access additional resources to scale

*Note: The scope of this note is limited to site-level economics. It does not discuss broader but also critical challenges affecting mini-grids such as: licensing, regulation, financing/subsidies, and other aspects of the investment climate.

Fortunately, standardization is enabling commercial experimentation: "Mini-Grids 3.0" and beyond

Mini-grid companies bring valuable resources and capabilities that can be leveraged to ease constraints in agribusiness

Relevant strengths of mini-grid companies

Commercial and technical expertise

National and international recognition

Visibility and Business credibility networks and partners

Smart technologies

Ability and ambition to operate at scale

Formal business practices

Social impactorientation

African agricultural commodity value chains face common constraints¹

Under- Performing Value chains	Insufficient utilization of inputs and mechanize- tion	Limited reach of to boost on farm production	Poorly organized post aggregation and transport	Inconsistent capacity for effective value addition	Poorly developed market linkages trade corridors	
Insufficient Infrastructure	Insufficient tra energy, water hard infrastru to uncompetit structures	ansport, r and others cture leading tive cost	Underdevelop aging smallho commercial a industries	bed soft infrastr blder farmers a griculture and a	ructure nd lack skills agro-allied	
Limited to agriculture finance	Real and perceived risk limiting private sector investment	High service of small deal siz data, and low agriculture ler	cost due to ces, lack of capacity in nding	Limited marked attractiveness perceived hig outside of the sector	et s relative to her returns agriculture	

Source:

¹ https://www.afdb.org/fileadmin/uploads/afdb/Documents/Generic-Documents/Feed_Africa-Strategy_for_Agricultural_Transformation_in_Africa_2016-2025.pdf

Mini-grid companies bring valuable resources and capabilities that can be leveraged to ease constraints in agribusiness

African agricultural commodity value chains face common constraints¹

Adverse agri- business environmen t	Unfavorable access and incentives limiting trade and capacity to produce high- quality products	Ineffective sector regulation creating long lead times for new technologies inconsistent trade policies	Unsupportive business enabling environment restricting land tenure and general ease of doing business	
Limited inclusivity, sustainabilit y and nutrition	Insufficient inclusivity of women and youth in agriculture development	Limited incentives to ensure sustainability and climate-resilient practices.	Limited access and affordability of commodities with high nutrition levels	

Mini-grid companies navigate several unknowns when identifying, assessing, and designing new sites

Who to connect to the grid?

- What mix of anchor, institutional, micro-enterprise, and household customers to connect?
- Who is too far from the mini-grid?
- Who is best served by an SHS?

How to design tariffs and forecast long-term pricing?

- · How to design a tariff structure for differing customer segments?
- · How will communities and customer behavior change once over time?
- · How will communities react to tariff changes?

How to manage seasonality?

- · How can we increase demand for electricity over the long-term?
- · How can we manage low consumption during low-income seasons?
- How can we smooth Abilities to Pay (ATP) and/or energy consumption throughout the year?

How to size and time CAPEX?

- · How much generation and storage capacity to install?
- · How much capacity to install now vs. later?
- How to ensure that electrical equipment and appliances are available in the community?

By creating rural wealth, AgriGrid operators mitigate key mini-grid investment risks

Who to connect to the grid?

- By providing access to market for agricultural commodities, a greater number of households will be able to afford connection fees and electricity purchases.
- Some households will remain untenable for mini-grid connection due to their location.

How to design tariffs and forecast long-term pricing?

- Greater disposable income provides certainty around increased household demand for electricity.
- Commercial loads from agricultural infrastructure can be accurately forecasted during business planning.
- The existence of a community organization that is connected to agriculture and energy operations can mitigate social risks.

How to manage seasonality?

- Greater income increases household resilience and the ability to save during low-income seasons.
- AgriGrid operations can be designed with multiple food & ag value chains to smooth incomes and load year-round.

How to size and time CAPEX?

- · Increased incomes enables greater certainty in ability to pay for electricity.
- Installing a large commercial processing facility to support a viable agribusiness decreases error margins in capacity planning.
- Providing market linkages ensures that equipment and appliances are paid off.

The model alleviates challenges in crop productivity, rural incomes, energy access, and food systems

Modern Mini-Grid

- Low agricultural productivity
- Low and irregular household incomes
- Limited ATP* for energy services
- Limited growth in energy demand
- Economically fragile communities
- Financially fragile mini-grid companies

AgriGrid

- Optimized agricultural productivity
- Increased and smoothened incomes
- Greater disposable income for energy consumption
- Economically growing communities

•

•

- Financially valuable agribusiness companies
- Modern, efficient, and commercial-scale agribusiness
 - Consumption of domestic products
- Net food exporter
- Government FX revenue

- Informal, exploitative, inefficient
 agribusiness industry
- Unmet consumer demand for food
- Net food importer
- Government food subsidies

While the AgriGrid model may create long-term value, operational risks also increase

STRENGTHS

- Increased household incomes in rural areas
- Increased household energy consumption
- · Improved load forecasting
- Decreased effects of seasonality
- · Increased development impact
- Improved investment performance
- · Greater trust with communities
- Increased national economic benefits

WEAKNESSES

- Need for agribusiness and mini-grid expertise
- Increased CAPEX and OPEX
 requirement
- Complex, site-specific project designs
 and models
- Multi-party/partner commercial risks
- New regulatory risks (food and agriculture)
- Inter-/intra-company tradeoffs

OPPORTUNITIES

- High value international export opportunities
- · Multi-value chain product strategies
- More attractive financing terms and envelopes
- Transformation of local communities
- · Creation of industrial clusters
- Integration with national energy, food, and agro-industrial investment planning
- Leveraging food, agriculture, and nutrition resources for energy access aims

THREATS

- Competitive pressures in food and ag markets
- · Dependency on seasonal commodities
- Climate risks: floods, pests, crop disease, drought
- Pricing risks of agricultural commodities
- Community risks of profit sharing models
- Risk of disenfranchising existing traders
- Challenging to secure partners due to complexity

CASE STUDY

Assessing an AgriGrid opportunity in rural Madagascar UNLESS MIT CARGO

Approach: Exploring an AgriGrid at "MadaSite"

Madagascar imports USD 760 million of food and animal products annually – roughly 6% of GDP1

Animal and vegetables by-products: USD 146M

National food import bill (million USD)

Site Selection: Exploring fit with existing sites

Potential Pipeline Sites

Basic Site Analysis

Initial Site Scoring

--

--:

*

=

.

.

Site Selection: 3 sites shortlisted sites for Rapid Scans

Quick Scan Results: Food & ag value chain data

- For each of the 3 shortlisted sites, our field team gathered data on existing food & agriculture activities
- We coupled this data with pre-existing site feasibility assessments
- We looked at other generic factors - such as road access, presence of commercial ag players, proximity to demand centers, and more – to select the site for a deeper dive

Site Selection: "MadaSite"

- **12** km from paved road
 - Closest town: 13 km
 Head of region: 145 km
 - Capital: 990 km
- Daily bus and rickshaws to closets town
- Nearest grid: 13 km

Agricultural Information

Mini-Grid Specifications

195 kW Solar PV 110 kVA Diesel 252 kWh Li-ion storage 14,5 km LV network 800 connections 780 1-Phase connections 20 3-Phase connections

Base Case: A modern mini-grid at MadaSite

#

ť

kWp

kVA

kWh

kVA

km

km

A 192 kWp Solar PV/Diesel hybrid project at MadaSite performs as a conventional modern mini-grid

Customers

Number of phase 1 users Number of phase 3 users

Total Generation Assets

Solar PV incl. mounting system Diesel generators
Battery
PV inverter

Total Distribution Assets

LV distribution grid

MV distribution grid

14,2

_

Financed with

Funding Sources USD Grant Village Contribution Senior Debt

Cash
543.089
-
243.636
131.188
917.913

vears

%

%

USD

years

USD

USD

USD

USD

USD

Investment and Project Performance*

Returns

Equity

Total

Forecast period

25

agri-grid
17,33%
19,5%
227.086
10

Return to equity

Equity Equity IRR (US\$ based) Project IRR (MGA based) Project NPV Payback (yrs)

*Capital structure = 55% grant, 15% equity, 30% debt; equity IRR = 12%, WACC = 12.5%.

AgriGrid case: Food & ag analysis at MadaSite

The main and existing agricultural value chains include rice, tomato, banana, mango, and sugarcane.

	Market potential	Social impact	Scale and replicability	Seasonality	
Rice	•••	•••	•••	••	
Banana	••	•••	•••	••	
Sugar cane	••	••	••	•	
Tomato	••	•	••	•	
Mango	••	••	•	•	

High potential

- 90% of farmers in the village grow rice
- There are 2 harvest seasons, smoothing incomes
- Rice is the main staple crop in the country, so the opportunity is highly scalable to other sites
- Rice millers want electricity to replace diesel
 - Many other sites have high banana production
 - Bananas can be processed into juice or dried fruits
 - Bananas grow almost year-round
 - There is a sugar company near the site
 - Around 50% of the farmers grow sugarcane
 - Few areas in the country produce sugarcane

Result:

We selected the rice value chain as the lead value creating opportunity in MadaSite. Rice is grown throughout the country however there is minimal value addition in rice value chains. Madagascar imports USD 118 million of cooking oil, for which domestically produced **Rice Bran Oil (RBO)** can be a competitive substitute.

AgriGrid case: Food & ag analysis at MadaSite

AgriGrid Case: Producing RBO at MadaSite on a rather small scale with max. 20 MT per day during high season

Number of local rice huskers	#	29
Average rice bran processed during HIGH SEASON per husker	MT p.m.	20,0
Average rice bran processed during LOW SEASON per husker	MT p.m.	7,0
Average volume of rice bran per husker	MT p.a.	123,0
TOTAL rice bran production	MT p.a.	3567,0
Purchasing price from rice dehuskers	MGA/MT	300.000
Rice husker inclusion rate	%	
Total annual rice bran yield	MT p.a.	
Losses and wastage	%	10,0%
Net annual production volume	MTp.a.	
Rice bran oil content	%	20,0%
Rice bran oil volume p.a.	MT p.a.	642,1

Annual sales of more than 1 billion MGA p.a. both to local shops and to wholesalers (equivalent to USD 280k)

AgriGrid Case: Assumptions

Market

- · Households would adopt RBO at a competitive price
- Household cooking oil consumption of 2 liters/month
- Sales territories and the storage facility sized such that RBO sales were possible year-round

Business Design

- · Mini-grid and RBO investments are shared by one entity
- O&M of mini-grid and RBO assets provided by one entity
- Rice bran catchment area limited to electrified mills (29)
- RBO factory receives free electricity (i.e. self-consumption)
- RBO sold to retailers outside of MadaSite
- RBO profits are shared 50/50 with community association
- Community association allocates RBO profit share in cash (i.e. not in-kind)
- Households maintain % energy expenditure

Energy

- System size not affected simply less excess capacity
- Distribution network design not affected -lower number of household connections than Base Case
- Increase in household energy consumption ~ increase in disposable income

Rice Bran Oil

- 50% of existing bran would be available for purchase
- No bran storage, but storage for RBO
- Operations of 300 days/year
- 10% loss between bran supply and produced RBO

AgriGrid Case: Prototype project design

Madasite Community

AgriGrid Case I: Small-scale mini-grid + RBO sales don't lead to improved financial performance

#

Ħ

kWp

kVA

kWh

kVA.

km

km

Unchanged number of productive users (apart from rice bran oil processing plant as internal consumption) but increased power production capacity

Customers

LV distribution grid

MV distribution grid

Number of phase 1 users Number of phase 3 users

Total Generation Assets

Solar PV incl. mounting system
Diesel generators
Battery
PV inverter

Total Distribution Assets

302
13

0.00

14.2

_

Funding Sources USD Grant Village Contril

Sources obb		
Grant	USD	885.238
Village Contribution	USD	-
Senior Debt	USD	400.137
Equity	USD	215.458
Total	USD	1.500.833

	Translating into

years

%

%

USD

years

Investment and Project Performance*

Returns

Forecast period

iod

25

Equity

Equity IRR (US\$ based) Project IRR (MGA based) Project NPV Payback (yrs)

agri-grid
14,40%
17,3%
228.438
10

AgriGrid Case II: Going to scale turns the page

Unchanged number of productive users (apart from rice bran oil processing plant as internal consumption) but increased power production capacity

Financed with

Customers

Number of phase 1 users Number of phase 3 users

Total Generation Assets

Solar PV incl. mounting system
Diesel generators
Battery
PV inverter

983
13

kVA

#

#

kWp

kVA.

kWh

km

km

Total Distribution Assets

LV distribution grid MV distribution grid

14,2
-

Funding		
Sources USD		Cash
Grant	USD	3.701.417
Village Contribution	USD	-
Senior Debt	USD	1.420.588
Equity	USD	764.932
Total	USD	5.886.937

Investment and Project Performance*

Returns

F. dim a

Forecast period

vears

%

%

USD

years

25

Equity

Equity IRR (US\$ based) Project IRR (MGA based) Project NPV Payback (yrs)

mini-grid only
34,53%
27,2%
2.085.774
5

Limitations of the AgriGrid Case analysis

Agricultural Modelling	 Other, higher potential market opportunities for increasing "export revenue" likely exist. We selected the cooking oil market to illustrate here due to established demand and clear information on retail pricing. There are several additional options for agricultural value creation in other value chains. We limited our analysis to new product development based on existing value chains.
RBO Production and Retail Marketing	 We assumed that Malagasy households would purchase RBO as a cooking oil substitute. RBO is not a simple oil; it involves complex processing which we simplified in our analysis. There are several retail options which we brainstormed but did not explore. We simplified retail operations by indicating a retail price competitive with existing oils and used an industry standard profit margin.
Energy System Modelling	 We did not materially adjust the mini-grid design between the two cases. This is likely not realistic. Since we did not adjust energy system dimensions, we instead estimated trade-offs for # connections, consumption, and revenue.
Community and Household Modelling	 We assumed households and rice millers would willingly sell rice bran to the AgriGrid operator in exchange for profit-sharing. We assumed that electricity consumption would rise with increased incomes.

Comparing a mini-grid vs. AgriGrid with different sizes at MadaSite

The proposed AgriGrid project design increases development impact and investment performance but only at large scale

Performance		Mini-grid case	Small AG case	Large AG case	Deviation L-S
Average EBIT margin	%	19.1	12.1	12.6	0.5
Equity IRR	%	17.3	14.4	34.5	20.1
Equity NPV	USD	101,793	67,299	1,364,551	1,297,252
Equity payback	years	10	10	5	-5
Cumulated flow to equity	USD	1,036,323	1,240,415	6,364,811	5,144,396
Funding		Mini-grid case	Small AG case	Large AG case	Deviation L-S
Grants for assets	USD	543,089	885,238	3,701,417	2,816,179
Grants for first loss	USD	83,727	130,901	0	0
Village contribution	USD	0	0	0	0
Senior debt	USD	243,636	400,137	1,420,588	1,020,451
Equity	USD	131,188	215,458	764,932	549,474
Total	USD	1,001,640	1,631,734	5,886,937	4,255,203

- We decided not to continue with a full feasibility assessment of the RBO opportunity. While attractive, RBO production appears technically complex, requiring sophisticated supply chains and high volumes.
- Were we to continue with the RBO value chain, a full feasibility study would include: consumer taste testing of RBO, an assessment of food and ag regulations, detailed sales channel research, deeper technical and operations research, and deeper supply chain research and modeling.
- We would require an RBO technical expert and community development expert to complete a full feasibility assessment.
- We would further assess the governance model. A joint venture or partnership may be preferable to a fully integrated entity.
- Going to scale with the RBO value chain will create funding challenges.
- Instead, we investigate other value chains that are less complex, less challenging in terms of investment and operationalization, and more easily replicable. A pilot is being developed for commissioning in 2021.

www.enaccess.org fabio@enaccess.org www.go-anka.com camille.ab@go-anka.com

Published in April 2020